路桥视频| 路桥隧交流论坛| 站点地图|
首页| 文库| 博客| 图库| 视频| 网摘| 路桥隧交流|
  • 行业资讯
  • 路基路面
  • 桥梁涵洞
  • 隧道工程
  • 测量绘图
  • 学术论文
  • 施组方案
  • 试验质检
  • 内业资料
  • 安全环保
网站公告: 网站新建QQ交流群 路桥吾爱第五版更新. 把QQ空间或其他博客.

您的位置: 路桥吾爱

全部评论

评论: CASIO4850万能坐标计算程序

查看数: 5026 / 评论数: 15 / 好评: 3 / 差评: 0

  • 删除 引用 Guest (2010-2-28 11:42:43, 评分: 0 )

    原帖由Guest于2008-02-17 15:11:09发表
    到X=A+Q÷6×(Cos C+Cos J +4∑(Cos (C+((L+0.5)PQ+2UR)×(L+.5)S),L,0,(N-1))+2∑(Cos (C+((LPQ+2U.
  • 删除 引用 Guest (2010-2-28 11:37:38, 评分: 0 )

    你好  程序x=A+Q÷6×(cos C+cos J+4........   这段怎么过不去啊
  • 删除 引用 Guest (2008-6-20 20:41:16, 评分: 0 )

    可以可以可以!!!!!!!!!!!
  • 删除 引用 Guest (2008-2-17 15:11:09, 评分: 0 )

    到X=A+Q÷6×(Cos C+Cos J +4∑(Cos (C+((L+0.5)PQ+2UR)×(L+.5)S),L,0,(N-1))+2∑(Cos (C+((LPQ+2UR)LS,L,1,(N-1)))+ZCos(J+90)不运行了,出现ma  error错误,不知道为何了
  • 删除 引用 Guest (2008-1-22 15:09:12, 评分: 0 )

    ttgde
  • 删除 引用 Guest (2008-1-06 16:07:01, 评分: 0 )

    这程序用着还可以  但只能算正交的  能否再改一下  能算斜交的就更好了
  • 删除 引用 Guest (2008-1-06 16:06:57, 评分: 0 )

    这程序用着还可以  但只能算正交的  能否再改一下  能算斜交的就更好了
  • 删除 引用 Guest (2008-1-06 15:30:06, 评分: 0 )

    程序用着还很好用 就是不能算任意角度的,只能算正交的  能否改一下 算斜交的?
  • 删除 引用 Guest (2007-12-30 17:50:48, 评分: 0 )

    这是我早期编的程序,已经落后了,现将最新更新上传
    (我现在主要在测量空间、筑龙发表程序)

    程序特点:
    真正的全线贯通坐标计算,在曲线元要素输入时仅需要输入第一段全部曲线元要素,后面曲线元要素除起点半径、终点半径、曲线长、转向需输入外其他要素均从前一曲线按辛普森8等分计算得出;辛普森公式任意等分,满足所有精度要求;全线曲线元数据一次性程序化输入,扩充变量数据库,无需修改程序内容;傻瓜操作,适用初级用户;
    一、程序:MC
    W“1.JS   2.SZ”:W=1=>Z[2]=0:Goto 1 ΔW=2=> O“KOU  LING”:O≠123456=>O=0: “OUT” ◢Goto 4ΔO=0: Z[1]=0:Goto 0←┘
    Lbi 0←┘
    ”N0.”:Z[1]+1 ◢←┘
    Z[1]=0=>{ABCREFGU}:A“X0”:B“Y0”:C“F0”:R“R0”:E“RN”:F“D0”:G“LS”:U“G” : Z[Z[1]×8+3]=A:Z[Z[1]×8+4]=B:Z[Z[1]×8+5]=C:Z[Z[1]×8+6]= R-1:Z[Z[1]×8+7]= E-1:Z[Z[1]×8+8]=F: Z[Z[1]×8+9]=F+G: Z[Z[1]×8+10]=U: “NEXT”◢ Isz Z[1]: Goto 0ΔZ[1]=1=>D=Z[9]:Z=0:Z[2]=0:GOTO 2ΔD=Z[(Z[1]-1)×8+9]:Z=0:Z[2]=Z[1]-1:GOTO 2←┘
    Lbi A: Z[Z[1]×8+3]=X:Z[Z[1]×8+4]=Y:Z[Z[1]×8+5]=J: Z[Z[1]×8+8]=D: {REGU}:R“Ro”:E“RN”: G“LS”:U“G”: :Z[Z[1]×8+6]=R-1 Z[Z[1]×8+7]=E-1: Z[Z[1]×8+9]=D+G: Z[Z[1]×8+10]=U: “NEXT”◢ Isz Z[1]: Goto 0←┘
    Lbi 1←┘
    {DZ}:D:Z:Z[2]=0:Goto 2←┘
    Lbi 2←┘
    Z[2]>Z[1]-1=>GoTo 4ΔD≤Z[Z[2]×8+9]=>A=Z[Z[2]×8+3]:B=Z[Z[2]×8+4]: C =Z[Z[2]×8+5]:R=Z[Z[2]×8+6]: E=Z[Z[2]×8+7]: F=Z[Z[2]×8+8]: G=Z[Z[2]×8+9]: U=Z[Z[2]×8+10]: Goto3ΔIsz Z[2]:Goto 2
    Lbi 3←┘
    W=2 =>N=8:≠>N=5ΔP=U(E-R)÷Abs(G-F)÷N:Q=Abs(D-F):S=90Q÷π: J=C+(NPQ+2UR)NS:L=1←┘
    X=A+Q÷6×(Cos C+Cos J +4∑(Cos (C+((L+0.5)PQ+2UR)×(L+.5)S),L,0,(N-1))+2∑(Cos (C+((LPQ+2UR)LS,L,1,(N-1)))+ZCos(J+90)←┘     
    Y=B+Q÷6×(Sin C+Sin J +4∑(Sin (C+((L+0.5)PQ+2UR)×(L+.5)S),L,0,(N-1))+2∑(Sin (C+((LPQ+2UR)LS,L,1,(N-1)))+Z Sin(J+90):W=2=>GOTO AΔ

    Z=0=>“X”:X:Pause 0: “Y” :Y◢ Goto 1Δ
    Z<0=>“XL”:X:Pause 0: “YL”:Y◢ Goto 1Δ           fx4850 ①
    Z>0=>“XR”:X:Pause 0: “YR”:Y ◢ Goto 1 ←┘

    Z=0=> X “X” ◢Y “Y”◢ Goto 1Δ
    Z<0=> X “XL” ◢Y “YL”◢ Goto 1Δ               fx4800 ②
    Z>0=> X “XR” ◢Y “YR”◢ Goto 1 ←┘
    Lbi 4←┘

    二、说明   
    a、编制说明
       本程序是运用复化辛普生公式根据曲线段——直线、圆曲线、缓和曲线(完整或非完整型)的线元要素(起点坐标、起点里程、起点切线方位角、线元长度、起点曲率半径、止点曲率半径)及里程边距,对该曲线段范围内任意里程中边桩坐标进行计算,以及对卡西欧扩充变量的灵活应用,实现了真正意义上的的全线贯通及曲线要素输入程序化(在不修改程序内容的情况下可通过运行程序输入任意多段曲线元要素)。通过对N=? 进行修改,可对辛普森公式进行任意等分进行运算。(注:N为不小于2的整数,N越大精度越高,计算速度越慢;N越小精度越低,运算速度越快,一般曲线取N=4就能满足精度要求,在能满足精度的情况下尽量N取小值,已获得最佳运算速度,不要盲目的追求精度)
      b、程序操作说明
    程序分为两部分:1.JS为计算,2.SZ为设置。
    1、        首先用Shift+Defm键对计算器内存变量进行扩充,扩充变量数为8×X+2(X为曲线元段数,变量数视内存情况尽量大些),运行程序,选2进行曲线要素设置,为防止误操作在正确输入口令123456时方可进行设置,否则显示OUT跳到程序尾(LBI4)。在执行程序中将第一段曲线元要素按规律输入到扩充内存变量中(A“X0”:B“Y0”:C“F0”:R“R0”:E“RN”:F“D0”:G“LS”:U“G”),以后曲线仅需输入R“R0”、E“RN” :G“LS”:U“G”,其他参数自动计算得出。在显示NEXT时为提示是否输入下一曲线,按EXE继续输入,如不需再输入则退出程序。
    2、        选1.JS进行坐标运算,D输入桩号,Z输入左右距离(负为左,正为右,0为中)程序首先自动判断其在哪一线元内,并把其线元要素调出进行计算,即可对全线进行坐标计算。

    c、变量说明
    X0:Y0:F0――――曲线元起点X、Y坐标及起点正切线方位角
    R0:RN――――――曲线元起点及终点半径
    D0:LS:Q―――曲线元起点桩号、路线长度及线路左右偏标志(左=-1,直线=0,右=1)
    D――――――――曲线元中待求点桩号
    Z―――――――――计算边桩距中线平距,左边输入负值,右边输入正值,中桩输入0
    X:Y  (中)
    XL:YL (左)
    XR:YR (右)―――――――待求点的X,Y坐标
    扩充变量:Z[Z[1]×8+3]: Z[Z[1]×8+4]: Z[Z[1]×8+4]: Z[Z[1]×8+6]: Z[Z[1]×8+7]: Z[Z[1]×8+8]: Z[Z[1]×8+9]: Z[Z[1]×8+10]: 分别为各线元X0:Y0:F0;R0:RN:D0:LS:G,
            (1) 以道路中线的前进方向(即里程增大的方向)区分左右;当线元往左偏时,
    Q=-1;当线元往右偏时,Q=1;当线元为直线时,Q=0。
            (2) 当所求点位于中线时,Z=0,坐标显示X  Y;当位于中线左侧时,Z取负值,坐标显示XL  YL,;当位于中线右侧时,Z取正值,坐标显示XR  YR。
            (3) 当线元为直线时,其起点、止点的曲率半径为无穷大,以10的45次方代替。
            (4) 当线元为圆曲线时,无论其起点、止点与什么线元相接,其曲率半径均等于圆弧的半径。
             (5) 当线元为完整缓和曲线时,起点与直线相接时,曲率半径为无穷大,以10的45次方代替;与圆曲线相接时,曲率半径等于圆曲线的半径。止点与直线相接时,曲率半径为无穷大,以10的45次方代替;与圆曲线相接时,曲率半径等于圆曲线的半径。
             (6) 当线元为非完整缓和曲线时,起点与直线相接时,曲率半径等于设计规定的值;与圆曲线相接时,曲率半径等于圆曲线的半径。止点与直线相接时,曲率半径等
    于设计规定的值;与圆曲线相接时,曲率半径等于圆曲线的半径。
             (7)当两段缓和曲线相连时,相连处要素均输为10的45次方(可以看作缓直+直缓)。
    本程序可在4800  4850上运行,只需将输出部分进行修改。(4850①    4800②)


    郑石高速路面NO.9标余官营互通E匝道
    序号        Xo        Yo        Fo        Ro        RN        D0        LS        G
    1        744383.112        510406.456        43。34"00.0"        7000        7000        0        170        -1
            中点桩号        中点X        中点Y        终点桩号        终点X        终点Y                  
            85        744445.055        510464.662        170        744507.700         510522.112                  
    2        744507.700         510522.112         42。10"30.8"        7000        500        170        116.071        1
            中点桩号        中点X        中点Y        终点桩号        终点X        终点Y                  
            228.036        744550.193        510561.637        286.071        744590.136        510603.713                  
    3        744590.136        510603.713        49。18"02.3"        500        500        286.071        299.282        1
            中点桩号        中点X        中点Y        终点桩号        终点X        终点Y                  
            435.712        744669.415        510729.969        585.353        744707.945        510873.987                  
    4        744707.945        510873.987        83。35"44.8"        500        无穷大        585.353        60        1
            中点桩号        中点X        中点Y        终点桩号        终点X        终点Y                  
            615.353        744710.545        510903.872        645.353        744712.247        510933.823                  
  • 删除 引用 Guest (2007-12-30 17:49:45, 评分: 0 )

    这是我早期编的程序,已经落后了,现将最新更新上传
    (我现在主要在测量空间、筑龙发表程序)

    程序特点:
    真正的全线贯通坐标计算,在曲线元要素输入时仅需要输入第一段全部曲线元要素,后面曲线元要素除起点半径、终点半径、曲线长、转向需输入外其他要素均从前一曲线按辛普森8等分计算得出;辛普森公式任意等分,满足所有精度要求;全线曲线元数据一次性程序化输入,扩充变量数据库,无需修改程序内容;傻瓜操作,适用初级用户;
    一、程序:MC
    W“1.JS   2.SZ”:W=1=>Z[2]=0:Goto 1 ΔW=2=> O“KOU  LING”:O≠123456=>O=0: “OUT” ◢Goto 4ΔO=0: Z[1]=0:Goto 0←┘
    Lbi 0←┘
    ”N0.”:Z[1]+1 ◢←┘
    Z[1]=0=>{ABCREFGU}:A“X0”:B“Y0”:C“F0”:R“R0”:E“RN”:F“D0”:G“LS”:U“G” : Z[Z[1]×8+3]=A:Z[Z[1]×8+4]=B:Z[Z[1]×8+5]=C:Z[Z[1]×8+6]= R-1:Z[Z[1]×8+7]= E-1:Z[Z[1]×8+8]=F: Z[Z[1]×8+9]=F+G: Z[Z[1]×8+10]=U: “NEXT”◢ Isz Z[1]: Goto 0ΔZ[1]=1=>D=Z[9]:Z=0:Z[2]=0:GOTO 2ΔD=Z[(Z[1]-1)×8+9]:Z=0:Z[2]=Z[1]-1:GOTO 2←┘
    Lbi A: Z[Z[1]×8+3]=X:Z[Z[1]×8+4]=Y:Z[Z[1]×8+5]=J: Z[Z[1]×8+8]=D: {REGU}:R“Ro”:E“RN”: G“LS”:U“G”: :Z[Z[1]×8+6]=R-1 Z[Z[1]×8+7]=E-1: Z[Z[1]×8+9]=D+G: Z[Z[1]×8+10]=U: “NEXT”◢ Isz Z[1]: Goto 0←┘
    Lbi 1←┘
    {DZ}:D:Z:Z[2]=0:Goto 2←┘
    Lbi 2←┘
    Z[2]>Z[1]-1=>GoTo 4ΔD≤Z[Z[2]×8+9]=>A=Z[Z[2]×8+3]:B=Z[Z[2]×8+4]: C =Z[Z[2]×8+5]:R=Z[Z[2]×8+6]: E=Z[Z[2]×8+7]: F=Z[Z[2]×8+8]: G=Z[Z[2]×8+9]: U=Z[Z[2]×8+10]: Goto3ΔIsz Z[2]:Goto 2
    Lbi 3←┘
    W=2 =>N=8:≠>N=5ΔP=U(E-R)÷Abs(G-F)÷N:Q=Abs(D-F):S=90Q÷π: J=C+(NPQ+2UR)NS:L=1←┘
    X=A+Q÷6×(Cos C+Cos J +4∑(Cos (C+((L+0.5)PQ+2UR)×(L+.5)S),L,0,(N-1))+2∑(Cos (C+((LPQ+2UR)LS,L,1,(N-1)))+ZCos(J+90)←┘     
    Y=B+Q÷6×(Sin C+Sin J +4∑(Sin (C+((L+0.5)PQ+2UR)×(L+.5)S),L,0,(N-1))+2∑(Sin (C+((LPQ+2UR)LS,L,1,(N-1)))+Z Sin(J+90):W=2=>GOTO AΔ

    Z=0=>“X”:X:Pause 0: “Y” :Y◢ Goto 1Δ
    Z<0=>“XL”:X:Pause 0: “YL”:Y◢ Goto 1Δ           fx4850 ①
    Z>0=>“XR”:X:Pause 0: “YR”:Y ◢ Goto 1 ←┘

    Z=0=> X “X” ◢Y “Y”◢ Goto 1Δ
    Z<0=> X “XL” ◢Y “YL”◢ Goto 1Δ               fx4800 ②
    Z>0=> X “XR” ◢Y “YR”◢ Goto 1 ←┘
    Lbi 4←┘

    二、说明   
    a、编制说明
       本程序是运用复化辛普生公式根据曲线段——直线、圆曲线、缓和曲线(完整或非完整型)的线元要素(起点坐标、起点里程、起点切线方位角、线元长度、起点曲率半径、止点曲率半径)及里程边距,对该曲线段范围内任意里程中边桩坐标进行计算,以及对卡西欧扩充变量的灵活应用,实现了真正意义上的的全线贯通及曲线要素输入程序化(在不修改程序内容的情况下可通过运行程序输入任意多段曲线元要素)。通过对N=? 进行修改,可对辛普森公式进行任意等分进行运算。(注:N为不小于2的整数,N越大精度越高,计算速度越慢;N越小精度越低,运算速度越快,一般曲线取N=4就能满足精度要求,在能满足精度的情况下尽量N取小值,已获得最佳运算速度,不要盲目的追求精度)
      b、程序操作说明
    程序分为两部分:1.JS为计算,2.SZ为设置。
    1、        首先用Shift+Defm键对计算器内存变量进行扩充,扩充变量数为8×X+2(X为曲线元段数,变量数视内存情况尽量大些),运行程序,选2进行曲线要素设置,为防止误操作在正确输入口令123456时方可进行设置,否则显示OUT跳到程序尾(LBI4)。在执行程序中将第一段曲线元要素按规律输入到扩充内存变量中(A“X0”:B“Y0”:C“F0”:R“R0”:E“RN”:F“D0”:G“LS”:U“G”),以后曲线仅需输入R“R0”、E“RN” :G“LS”:U“G”,其他参数自动计算得出。在显示NEXT时为提示是否输入下一曲线,按EXE继续输入,如不需再输入则退出程序。
    2、        选1.JS进行坐标运算,D输入桩号,Z输入左右距离(负为左,正为右,0为中)程序首先自动判断其在哪一线元内,并把其线元要素调出进行计算,即可对全线进行坐标计算。

    c、变量说明
    X0:Y0:F0――――曲线元起点X、Y坐标及起点正切线方位角
    R0:RN――――――曲线元起点及终点半径
    D0:LS:Q―――曲线元起点桩号、路线长度及线路左右偏标志(左=-1,直线=0,右=1)
    D――――――――曲线元中待求点桩号
    Z―――――――――计算边桩距中线平距,左边输入负值,右边输入正值,中桩输入0
    X:Y  (中)
    XL:YL (左)
    XR:YR (右)―――――――待求点的X,Y坐标
    扩充变量:Z[Z[1]×8+3]: Z[Z[1]×8+4]: Z[Z[1]×8+4]: Z[Z[1]×8+6]: Z[Z[1]×8+7]: Z[Z[1]×8+8]: Z[Z[1]×8+9]: Z[Z[1]×8+10]: 分别为各线元X0:Y0:F0;R0:RN:D0:LS:G,
            (1) 以道路中线的前进方向(即里程增大的方向)区分左右;当线元往左偏时,
    Q=-1;当线元往右偏时,Q=1;当线元为直线时,Q=0。
            (2) 当所求点位于中线时,Z=0,坐标显示X  Y;当位于中线左侧时,Z取负值,坐标显示XL  YL,;当位于中线右侧时,Z取正值,坐标显示XR  YR。
            (3) 当线元为直线时,其起点、止点的曲率半径为无穷大,以10的45次方代替。
            (4) 当线元为圆曲线时,无论其起点、止点与什么线元相接,其曲率半径均等于圆弧的半径。
             (5) 当线元为完整缓和曲线时,起点与直线相接时,曲率半径为无穷大,以10的45次方代替;与圆曲线相接时,曲率半径等于圆曲线的半径。止点与直线相接时,曲率半径为无穷大,以10的45次方代替;与圆曲线相接时,曲率半径等于圆曲线的半径。
             (6) 当线元为非完整缓和曲线时,起点与直线相接时,曲率半径等于设计规定的值;与圆曲线相接时,曲率半径等于圆曲线的半径。止点与直线相接时,曲率半径等
    于设计规定的值;与圆曲线相接时,曲率半径等于圆曲线的半径。
             (7)当两段缓和曲线相连时,相连处要素均输为10的45次方(可以看作缓直+直缓)。
    本程序可在4800  4850上运行,只需将输出部分进行修改。(4850①    4800②)


    郑石高速路面NO.9标余官营互通E匝道
    序号        Xo        Yo        Fo        Ro        RN        D0        LS        G
    1        744383.112        510406.456        43。34"00.0"        7000        7000        0        170        -1
            中点桩号        中点X        中点Y        终点桩号        终点X        终点Y                  
            85        744445.055        510464.662        170        744507.700         510522.112                  
    2        744507.700         510522.112         42。10"30.8"        7000        500        170        116.071        1
            中点桩号        中点X        中点Y        终点桩号        终点X        终点Y                  
            228.036        744550.193        510561.637        286.071        744590.136        510603.713                  
    3        744590.136        510603.713        49。18"02.3"        500        500        286.071        299.282        1
            中点桩号        中点X        中点Y        终点桩号        终点X        终点Y                  
            435.712        744669.415        510729.969        585.353        744707.945        510873.987                  
    4        744707.945        510873.987        83。35"44.8"        500        无穷大        585.353        60        1
            中点桩号        中点X        中点Y        终点桩号        终点X        终点Y                  
            615.353        744710.545        510903.872        645.353        744712.247        510933.823                  
  • 删除 引用 (2007-11-01 10:38:59, 评分: 0 )

    能算卵型曲线和抛物线不????????
  • 删除 引用 gsc19560311 (2007-10-26 17:05:12, 评分: 0 )

    支持楼主
  • 删除 引用 李洪 (2007-10-04 15:38:15, 评分: 0 )

    能算卵形和S型曲线不?
  • 删除 引用 Guest (2007-7-03 18:43:24, 评分: 3 )

    评 3 分
  • 删除 引用 (2007-5-25 16:58:27, 评分: 0 )

    这网站是我们工程人员的好地方
 
-5 -3 -1 - +1 +3 +5

评分:0

发表评论

【声明】 路桥吾爱刊载的资讯及其他内容均由网友提供分享 并且纯属作者个人观点,不表示路桥吾爱同意其说法或描述,仅为提供更多信息,也不构成任何建议。网友转载请注明原作者姓名及出处。如有侵犯到您的版权,请与我们联系,我们会马上进行重新整理!

点击这里给我发消息 加入【路桥吾爱-lq52.com】QQ群 | 交流论坛 | 站点地图 | 友情链接 | 空间列表 | 站点存档 | 手机访问 |

路桥吾爱 2001-2012 湘ICP备16018960号-1